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Abstract
Comparison of solute pair distribution functions in the true mixture and in the
effective fluid is used as a diagnosis of the importance of many-body interactions
in the effective fluid model of binary asymmetric hard-sphere mixtures. Results
from integral equations and density functional theories are compared with
simulation data for size ratios R = 3.33, 10 and 20. Small deviation from
the pair interaction approximation are detected up to R = 20. The origin of
these deviations suggests that many-body effects might be more important in
non-hard-sphere mixtures exhibiting long range solute–solvent correlations.

1. Introduction

The theoretical description of colloidal suspensions at the effective fluid level considers a one-
component system of solute particles interacting via a coarse-grained potential obtained by
integrating out the degrees of freedom of the other components of the mixture. From a practical
point of view, one is often forced to adopt such a one-component description because the direct
treatment of ‘true’ mixtures meets particular difficulties, both in the ‘analytical’ routes and in
the simulation one, which is necessary at least to validate the unavoidable approximations made
using the former route. This formal mapping onto an effective one-component fluid is exact
as long as one retains the many-body nature of the coarse-grained interaction, whose exact
evaluation is, however, impossible. In practice, this procedure is thus used only under the pair
additivity assumption, which ignores contributions beyond two-body interactions (this will be
referred to as the pair interaction approximation (PIA)). Since there is growing evidence that
many-body interactions might be important even for uncharged colloids [1–3], it is important
to assess the domain of validity of this assumption (see also [4] for a discussion of this point).
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The direct estimation of many-body effects at the theoretical level is actually difficult. One
practical diagnosis of their importance is the comparison of structural quantities computed for
the ‘true’ mixture and for the one-component fluid with effective pair interactions [2].

The simplest model for which such a programme can be carried out is the binary mixture
of hard spheres (HS) with high diameter ratio R = d2/d1 � 1 (hereafter 1 and 2 refer to
solvent and solute particles, respectively). This model has been widely studied in recent years
to understand the phase behaviour of sterically stabilized colloids, essentially pseudo-binary
colloid–colloid or colloid–polymer mixtures. The true HS mixture model is characterized by
the size ratio R and the packing fractions η1 and η2 (ηi = π

6 ρi d3
i , with ρi the number density

of component i ). In the corresponding effective fluid with pair interactions, the total potential
energy of the N2 solute particles is φ(RN2 ; µ1) = ∑

i< j φHS(Ri j) + φeff(Ri j; µ1), where φHS

is the direct HS interaction and φeff is the potential of the mean force at infinite dilution, in
the pure solvent at chemical potential µ1. If the correspondence between the thermodynamic
variables (η1, η2) and (µ1, η2) is properly established, the PIA is the main source of possible
differences between the solute pair distribution functions (pdf) in the true mixture and in
the effective fluid, gmix

22 and geff
22 , respectively. Calculations with the reference hyper-netted

chain (RHNC) integral equation and density functional theories (DFT) complement a previous
report [2] of a similar comparison from simulation. It is indeed important to check whether
‘analytical’ methods can provide reliable results, because simulations are particularly difficult
when R exceeds unity by a large amount.

This work is presented as follows: after presenting in section 2 the theoretical methods
used to compare gmix

22 and geff
22 , results will be presented in section 3 for R = 3.33, 10 and

20 in order to estimate the domain of size ratio and packing fractions for which the pair
approximation might be sufficient. The test by simulation of the non-additivity of the mean
force will also be reconsidered briefly and the paper will end with a brief conclusion.

2. Theoretical methods

2.1. Formal mapping onto the effective fluid

The formal reduction of a (binary) mixture onto an effective one-component fluid is now well
documented (see, for example, [5]). The convenient thermodynamic ensemble is the semi-
grand one. The mixture with a fixed number of solute particles N2 is in equilibrium with a
reservoir of solvent particles with temperature T and chemical potential µ1. The associated
thermodynamic potential F(N2, V , T ; µ1) is

F = −kT ln Z(N2, V , T ; µ1) (1)

with

Z = 1

N2!�3N2
2

∑
N1

zN1
1

N1!

∫
V

∫
V

drN1 dr′N2 exp[−β H (rN1 , r′N2)] (2)

where β = 1/kT , z1 = �−3
1 exp(βµ1) is the solvent fugacity with �i = h/

√
2πmi kT and V

is the volume of the mixture. Equivalently, Z can be written as

Z = 1

N2!�3N2
2

∫
V

drN2 exp[−β(H22(rN2) + �)] (3)

with

� = −kT ln
∑
N1

zN1
1

N1!

∫
V

dr′N1 exp(−β H11(r′N1) + H12(r′N1 , rN2)) (4)
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where Hi j is the sum of the pair interaction terms ui j between species i and j . Equations (2)
and (3) are exact. They constitute the starting point of the effective one-component
representation, Z appearing as the canonical partition function of a one-component system
with thermodynamic variables (N2, T, V ) interacting through the effective N2-body interaction
potential H eff = H22 + �. In this treatment, the effect of the solvent on the solute particles is
entirely contained in the indirect potential �. The latter depends on µ1 and is a functional of
the interaction potentials u11 and u12 through equation (4). Although the latter shows that there
is little chance that � would be a sum of pair terms, its expression is, however, so intractable
that direct estimation of the domain of validity of the PIA is impossible. In this approximation,
one writes down � as an expansion in n-body terms:

� = �0(µ1, T, V ) + N2ω1(µ1, T, V ) +
∑
i< j

ω2(ri j; µ1, T ) + higher-order terms. (5)

The analysis of the different terms in equation (5) is detailed, for example, in [5]. We just
mention here that �0 is the grand potential of the pure solvent at µ1 and T . The one-body term
N2ω1 is the grand potential difference obtained by considering as independent the contribution
of each solute particle in the solvent sea. The only relevant term for the phase behaviour of
the effective fluid (at fixed µ1 and T ) is that involving ω2 (a formal comparison of the free
energies in the mixture and in the effective fluid is detailed in [6]). If the potential of the mean
force is defined so that it vanishes when the N2 solutes are all far apart, we are left with an
effective fluid with pairwise additive interactions:

H eff =
N2∑

i< j

ueff(ri j ; µ1, T ) (6)

with

ueff(r; µ1, T ) = u22(r) + ω2(r; µ1, T ) (7)

where ueff contains the direct part u22 of the solute–solute interaction and the indirect one
ω2 is mediated by the solvent. For a pure HS mixture, ω2 reduces to the depletion potential
(hereafter denoted φeff ). For a given size ratio, φeff depends only on r and µ1 (or ρb

1 , the
solvent density in the reservoir).

To complete the mapping, we need to establish the correspondence between the variables
(η1, η2) and (µ1, η2) or equivalently (ηb

1, η2), where ηb
1 is the solvent packing fraction in the

reservoir. This is achieved in principle by solving the osmotic equilibrium equation:

µ1(η
b
1) = µ1(η1, η2). (8)

Whereas the lhs of equation (8) can be evaluated from accurate equations of state for the
one-component HS fluid, the rhs requires computing the solvent chemical potential in the
mixture, which is a non-trivial task. Fortunately, several approximations have been tested
against simulations [5]. The relation ηb

1(η1, η2) was thus taken either from the scaled particle
theory (SPT) expression or from that proposed in [7], which was recently found to work quite
well.

2.2. gmix
22 and gef f

22 from DFT and RHNC

The pdfs were computed from Rosenfeld’s fundamental measure functional (FMF) either in
a pure DFT scheme, or from the RHNC closure of the Ornstein–Zernike equation (OZE),
the bridge functions bi j being obtained from the FMF [8]. Since both routes share the latter
DFT, we begin by briefly recalling the main steps of a pure DFT calculation of the pdfs
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(for a review of the DFT, see [9]). The starting point is the equation giving the density profile
ρi (r) = ρi (1 + hi (r)) for particles of type i , subject to an external potential ui (r):

ρi (r) = ρi exp{−βui(r) + c(1)
i (r) − c(1)

i,o (r)}. (9)

Equation (9) follows from the minimization of the grand potential �[{ρi(r)}]. The latter
is obtained from an assumed form of the excess free energy functional β FHS

ex [{ρi(r)}] =∫
dx 	[{nα(x)}], where {nα(x)} is a set of weighted densities constructed from the actual

densities {ρi (r)}. ρi is the density of particles of type i far from the inhomogeneity.
The one-particle direct correlation functions (dcf) given by the first functional derivative
c(1)

i (r1) = −βδFex[{ρi(r)}]/δρi(r1) is minus the excess (with respect to the ideal gas) chemical
potential functional in units of kBT : c(1)

i (r) = −βµi,ex[{ρi(r); }r ]. One thus has

βµHS
i,ex[{ρi(r)}] =

∑
α

∂	[{nα(r)}]
∂nα

⊗ ω
(α)

i . (10)

When equation (9) is used in the test particle limit (ui(r) = ui j(r), the potential felt by a
particle of type i created by the test particle j at the origin) the pdf i– j is

gDP
i j (r) = exp{−βui j(r) + (µi,ex[ρi (r); r ] − µi,ex(ρi )}. (11)

For a homogeneous system, Rosenfeld’s original FMF features the Percus–Yevick (PY)
free energy density 	({nα}). The dcfs obtained from successive functional derivatives of FHS

ex
are also the PY ones. As recently shown by Roth et al [10] and Yu and Wu [11], to which one
may refer for details, improved results are obtained by inputting the BMCSL [12] expression
for 	. This is the method used in this work.

At this stage, it is recalled that the pure DFT route does not involve the OZE, which relates
the dcf and the pdf:

hi j = ci j +
∑

k

ρkcik ⊗ hkj (12)

where hi j = gi j − 1 is the total correlation function and ⊗ designates a convolution product.
This must be supplemented by a closure relation

gOZ
i j = exp{−βui j + hi j − ci j − bi j} (13)

with some approximation for the bridge function bi j . The RHNC/FMF follows by recasting
the density profile equation (9) in the form of a closure of the OZE (equation (13)). One thus
gets [8]:

bti [{ρi(r); r}] = β(µHS
i,ex[{ρi gti(r); r}] − µHS

i,ex({ρi})) + γ̃ti(r) (14)

where gti is the pdf for particles i in the field of the test particle and

γ̃ti (r) =
∑

j

ρ j c
(2),HS
i j ⊗ ht j (15)

where c(2),HS
i j is the two-body dcf obtained as the second functional derivative of FHS

ex . It must,
of course, also be computed [10, 11] from 	BMCSL.

We thus have two methods for computing the pdf: a pure DFT one (gDP
i j ) and one from the

OZ equation (gOZ
i j ). While the latter should, in principle, be preferred for computing structural

quantities (it obeys the OZE, which is a strong constraint), its major drawback is the existence
of a domain in the (η1, η2) plane where the integral equation has no solution. In this case, we
have to resort to the first method which usually does not exhibit this limitation to the same
extent.

We finally stress here a problem that is common to both methods. Since the FMF is not an
exact functional, the application of this formalism in the test particle limit does not guarantee
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the symmetry requirement gi j = g ji even when the species i and j play a symmetrical role in
FHS

ex . For preserving the symmetry in the indexes one introduces symmetrized bridge functions.
Rosenfeld’s ansatz is [13]

b̄ti = (xi bti + xt bit)/(xi + xt) (16)

with xi the concentration of component i . It is stressed here that bti is obtained from the
bridge functional Bi [{ρm gtm(r); r}] relative to component i (it is a functional of all the pdfs
gtm in the field of the test particle t). Equation (16) is, however, not the only way to achieve
symmetrization. The alternative

b̄ti = (xi bit + xt bti)/(xi + xt), (17)

for example, does the same. Both were thus used in this work. (A more detailed discussion
of this point will be given elsewhere. See also the recent work of Archer and Evans [14] for a
discussion of this point.)

The next step is to obtain the effective potential. This is obtained by writing the previous
equations at infinite dilution of the large spheres:

g22(r; ρ2 → 0, µ1) = exp[−β(u22(r) + 	eff(r; µ1)]. (18)

Here g22 is either gOZ
i j , as detailed for example in [15], or gDP

i j , in which case we recover the
DFT calculation of Roth et al [16] (see [14] for a proof of the equivalence of the two routes).

Once 	eff is known, geff
22 is computed from the formalism outlined above in the one-

component version. The situation is, however, not the same in the DFT and OZE routes. The
former can be used only in the context of a mean field or similar approximate treatments,
since we do not have functionals for arbitrary potentials. In this respect, the RHNC route
assumes only universality [8] of the bridge functional—that is a much weaker assumption.
Since the RHNC has been shown to work very well for ‘depletion-like’ potentials [15, 17], it
will provide an essentially exact result for a given 	eff , say that obtained from the DFT route.
This is the method we used to compare gmix

22 and geff
22 when the RHNC for the mixture falls in

the non-convergence domain.

2.3. gmix
22 and gef f

22 from simulation

The simulation data for gmix
22 and geff

22 are essentially those presented in our previous work [2],
except for R = 20, in the effective fluid. Other simulation data from the literature (obtained by
Lue and Woodcock [18] and Malijewsky et al [19]) will also be compared with the analytical
route. We just recall here that for the mixture our data were obtained with the cluster algorithm
of Krauth et al [20] in the (N1, N2, V , T ) ensemble.

To obtain geff
22 the relation ηb

1(η1, η2) was taken from the SPT which has been tested versus
simulation in [5]. At higher η2, the more accurate expression given in [7] was used instead.
The effective potential 	eff(r; ηb

1) is first computed by a very long PCA run with two solute
particles, as detailed in [2]. Once it is known, geff

22 (r; ηb
1, η2) is computed in a second step by

a standard (N2, V , T ) MC run.

3. Results and discussion

3.1. Effective potential

The determination of the effective potential is a preliminary step in the study of the effective
fluid. We thus consider briefly here its determination from the methods outlined above.
Calculation of the depletion potential by Roth et al [16] and those already presented in our
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Figure 1. Depletion potential for R = 20 as a function of the reduced distance between solute
particles, with a solvent bulk packing fraction ηb

1 = 0.14. The inset shows an enlarged section to
distinguish the three curves. Squares: simulation. Full curve: DFT (test part 1). Broken curve:
RHNC (sym 1). Dotted curve: RHNC (sym 2).

previous work [2] has shown that the DFT and integral equation routes are now accurate
enough, at least for the range of parameters R and ηb

1 for which simulation data are available.
An example is shown in figure 1 for R = 20. We indeed find an excellent agreement with
simulation. Three different calculations are actually compared with simulation (t1 stands for
a small test particle and sym 1 and sym 2 to equations (16) and (17), respectively). The
bulk solvent packing fraction in the example shown is, however, not large enough to draw a
definitive conclusion. We plan a more systematic comparison in the future in order to check
whether the analytical route might eventually spare the simulation in the determination of the
effective potential.

3.2. Pair distribution functions

gmix
22 and geff

22 were compared for size ratios R = 3.33, 10 and 20. This regime corresponds
rather to pseudo-binary colloid–colloid mixtures (though R = 20 is roughly the lowest limit
for micro-emulsions in a molecular solvent).

To begin with, we first discuss the case R = 10. In our previous work, the coordination
number G(r) = ∫ r

0 ρ2g22(r)4πr2 dr was used as the criterion because simulation data for the
pdfs are usually noisy. It was observed that, for fixed ηb

1, the effective fluid overestimates the
coordination number but its variation with η2 is moderate (when η2 falls in the range accessible
by the simulation algorithm). This overestimation seemed to increase with ηb

1 according to the
data we collected [2] (see also figure 5). Since in some instances we could obtain rather smooth
pdfs, we compare here the simulation and the RHNC results in figure 2 for R = 10 and a low
value of η2. Besides the excellent agreement between simulation and RHNC, we observe here
directly on the pdf the trend shown by the coordination number. Note that the overestimation
is rather moderate since the relative change of the coordination number at r = d1 + d2 is
about �G/G(r = d1 + d2) � 6% (�G/G = (Geff − Gmix)/Gmix). In order to check the
argument [2] according to which the error due to the pair additivity assumption should not
increase in relative magnitude with η2, we show in figure 3 the results at a much higher value:
η2 = 0.5. The simulation data are from the work of Lue and Woodcock and the analytical
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Figure 2. Solute pdfs for R = 10, ηb
1 = 0.17, η1 = 0.15, η2 = 0.091. Full curve: gmix

22 , broken
curve: geff

22 . Symbols: simulation; full squares: gmix
22 , empty squares: geff

22 .
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Figure 3. PDFs in a mixture with R = 10, η1 = 0.05, η2 = 0.5. Symbols: simulation from [18],
curves: DFT.

results are pure DFT ones (except for the effective fluid), since the RHNC is in the no-solution
domain. Note that we used a symmetrized version, i.e. we enforce g12 = g21 through the
equivalent of equation (16) for the chemical potentials in equation (9). Figure 3 shows the
agreement of three pdfs with simulation (a similar comparison is made in [11]). In figure 4,
which shows the comparison with the effective fluid, we again observe the overestimation in
the contact region of geff

22 as compared to gmix
22 . Note, however, that even with this high solute

packing fraction, the effect is again small. We have, for example, �G/G(r = d1 + d2) � 4%.
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Figure 4. geff
22 versus gmix

22 of figure 3. Full curve: gmix
22 ; broken curve: geff

22 (ηb
1 = 0.127). Symbols:

same as in figure 3.

(This figure is in colour only in the electronic version)
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Figure 5. Solute pdfs for R = 20, η2 = 0.097. Lower set: ηb
1 = 0.1, η1 = 0.089; upper set:

ηb
1 = 0.14, η1 = 0.127. Full curve: gmix

22 ; broken curve: geff
22 . Symbols: simulation; full squares:

gmix
22 ; empty squares: geff

22 .

It should be mentioned that, at larger distances, gmix
22 might fall below geff

22 . This suggests that
at large η2 the effect of the PIA can be subtle beyond the contact region.
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Figure 6. PDFs in a mixture with R = 3.33, η1 = 0.141, η2 = 0.348. Full curves: DFT.
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Figure 7. geff
22 versus gmix

22 of figure 6. Full curve: gmix
22 ; broken curve: geff

22 (ηb
1 = 0.288).

In conclusion, we may say that at R = 10 an overestimation of the ‘contact adhesion’ in
the effective fluid is detectable, but its influence remains moderate, at least in the regime of
the reservoir solvent packing fraction explored here (ηb

1 � 0.17).
A result for R = 20 is shown in figure 5. The trend observed for R = 10 is observed again

but the overestimation of the pdf is barely distinguishable. Note that new simulation data for
the effective fluid that we obtained very recently are displayed instead of the previous ones.
These were obtained with a lower number of large spheres and a too large histogram width.
Figure 5 suggests that R = 20 is close to the upper limit at which non-additivity effects might
be detected.

Finally, figures 6 and 7 show the result R = 3.33 (simulation data of [19] for d1/d2 = 0.3).
At this lower asymmetry the RHNC or DFT work quite well (see [11] for a comparison of the
latter with the simulation data of [19]). Unexpectedly, the difference between gmix

22 and geff
22 is

similar to that at R = 10. For a much less asymmetric case, one would have expected a more
obvious manifestation of non-additivity (the RHNC results suggest an even lower effect of the
PIA). Whether a larger effect would be obtained at larger ηb

1 remains to be investigated. This
shows that the dependence on the size ratio of the difference between gmix

22 and geff
22 is not simple.
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3.3. Discussion

The results shown above suggest that a moderate effect of the PIA is detectable for size ratios
R � 20. The simplest explanation of this observation is that the distribution of the solvent
ρ1(r; R1, R2) around two spheres nearly in contact should be disturbed by additional spheres.
In a triplet, for example, the actual effective force acting on solute 1 due to the presence of the
two other solutes (2 and 3) �F1(2, 3) would differ from the sum between pairs �F1(2) + �F1(3)

where �F1(i) is the effective force acting on solute particle 1 due to solute i . This superposition
approximation of the force is obviously equivalent to the PIA. The overestimation might now
be due to the neglect of the confinement effect which would increase the solvent density in
the channel between the large spheres when a third sphere approaches. This confined solvent
contributes to a repulsion when the separation between the surface of the large spheres is less
than one solvent diameter [21–23]. These effects should, of course, depend on the solvent–
solute correlation length and a third sphere whose minimum distance of approach is larger
than this length would barely affect ρ1(r; R1, R2). This can be viewed as a generalization of
the geometrical argument invoked in Asakura–Oosawa-like models [24]. The latter is based
on the impossibility of the simultaneous overlap of the three exclusion spheres beyond some
ratio Rlim.

Since some understanding of the origin of the overestimation of the effective adhesion
might suggest simple ways to correct the PIA, we attempted to detect non-additivity of the
mean force directly by simulation, as done for example in [25] for R = 1. In our previous
work, we reported a difference between the superposition approximation and the actual mean
force measured in a diamond configuration of four spheres (see the second line of table 2
in [2]). The force is obtained by extrapolating at contact the ensemble average

∑
i〈cos θi〉,

where θi is the azimuthal angle between the position ri of the i th solvent particle and the axis
along the direction of the measured force. The accuracy of the result depends on the method of
extrapolation. From the extensive checks we performed, we consider now that the difference
�F1(2, 3) − [ �F1(2) + �F1(3)] is within numerical uncertainty for R = 10. Recent attempts to

modify the separation between the spheres and the solvent density were also inconclusive. We
are presently considering non-planar configurations in order to try to detect this apparently
tiny effect (see also the discussion of this point in [4]).

From these considerations, we finally suggested [2] that the phase diagram of the mixture
should not differ qualitatively from that in the effective fluid with only pair interactions. The
main expected effect is an increase of the separation between the (metastable) fluid–fluid
boundary and the fluid–solid one. Some caution is, however, required since simulation data
are lacking when both ηb

1 and η2 are ‘large’.

4. Conclusion

As a brief conclusion, we may say that deviations from the PIA were detected in HS mixtures
for size ratios as large as R = 20, but their effect is estimated as moderate. It was also
observed that recent integral equation and DFT theories can capture this effect. This opens
up the possibility of a systematic exploration of the phase diagram in order to firmly establish
the domain of validity of this approximation. An interpretation in terms of the modification of
the solvent distribution about the spheres suggests a rationale for the observed overestimation
of the effective adhesion near contact. It also suggests that in non-HS systems possible long
range solute–solvent correlations might enhance the role of such many-body effects. Attempts
to correct this approximation by accounting for the presence of terms beyond second order
might be more relevant in this case.
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